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In this course, there's both a practical component, using Snap! in the lab, and a "big ideas" 
component, in lecture and discussion. One of the things we want you to take away from this course 
is to know that there's more to computer science than just writing computer programs, although of 
course we use those other things to help in writing programs. So we'll talk about some aspects of the
social context of computing, some of the theoretical explorations of the limits of computation, and 
some important moments in the history of computer science -- for example, you'll learn in a few 
weeks how one of the first computer scientists more or less singlehandedly won World War II for 
the good guys.

This week's big idea: Abstraction. Arguably the central idea of all of computer science. Computer 
programming is easy, as long as the programs are small. What's hard isn't the programming, but the 
keeping track of details in a huge program. The solution is chunking, or layering -- two metaphors 
for abstraction.

The classic example is thinking about a car. Cars are made of nuts, bolts, metal rods, big metal 
blocks, rubber or paper gaskets, plastic containers for fluids, rivets, wires, and so on. (Each piece of 
metal is further made of atoms, which are made of electrons, protons, and neutrons, which are made
of quarks, and so on down.) But if you're trying to repair a car, you don't think in those terms; if you
did, you'd never find where the problem is. Instead you think about the engine, the alternator, the 
fuel injectors, the brakes, the transmission, and so on. That's abstraction.

The march of technological progress is, at least in part, a march toward greater and greater 
abstraction. Each step reduces the extent to which people have to think about details. Sticking with 
cars as the example, in the early days, every driver had to be at least something of a mechanic, 
knowing how to deal with the rather frequent failures of the machinery. Before automatic 
transmissions. Only people with some understanding of gear ratios could drive. (In the really early 
days, they couldn't downshift without mastering the skill of double-clutching.)

The automatic transmission made possible an enormous abstraction. All the complexity of the 
machinery that makes a car work was hidden under the surface of a very simple model: You push 
the pedal on the right and the car speeds up; you push the pedal on the left and it slows down. 
Suddenly just about anyone could drive a car.

Of course, the widespread use of cars has turned out to be a mixed blessing. Cars are one of the 
main causes of pollution and global warming. Computers, too, have their downsides, which we'll be
discussing later. Many historians of science stay away from the word "progress," which I used two 
paragraphs back, because of its implicit suggestion that the development of new technology is 
always good. But before we can criticize technology we should understand something about how it 
works, and abstraction is a very powerful organizing idea to describe the mechanism.

Those two pedals, the gas pedal and the brake, are an /interface/, also known as an abstraction 
barrier. On the driver's side of the abstraction, what matters is the /behavior/ provided by this 
interface. Push this one to speed up, that one to slow down. Once that interface became 
standardized, further technical development has dramatically changed what happens up in the 
engine compartment. Originally, the gas pedal mechanically pushed a lever controlling a valve that 



determined the rate at which gasoline could flow into the engine. More gasoline, bigger explosions 
inside the engine, more power, so more speed. Today, the gas pedal doesn't really do anything 
mechanically, except provide an input to a computer inside the car, whose job is to control the fuel 
injection system. Your input is combined with other information about the car's environment to 
operate smaller valves, one per cylinder, that control the gas/air mixture more precisely.

The brake pedal has had a similar history. Originally, your foot directly provided the power to push 
the brake pads against the wheels. Then a new mechanism was developed, preserving the interface 
-- push here to slow down -- but now using the pressure from your foot to operate a hydraulic 
system that does the hard work of pressing the pads against the wheels. But there was one important
difference. The first "power brakes," like the modern gas pedal, completely eliminated the 
mechanical linkage between the pedal and the actual brakes.  But after a few accidents in which 
people couldn't stop their cars because the engine died, this design was modified. Today you have 
"power assisted brakes," which means that your foot both operates a hydraulic cylinder and /also/ 
directly puts pressure on the brakes. If the engine fails, you have to push a lot harder to stop the car, 
but at least it's possible. The latest development, anti-lock brakes, actually lets a computer in the car
override your pressure on the brake pedal if you are in danger of putting the car into a skid by trying
to stop too abruptly.

But the point is that drivers who aren't particularly interested in cars don't have to know any of this.
All they have to know is that you push the pedal on the right to speed up, and the one on the left to 
slow down! This /interface/ has survived through several generations of underlying technology, 
because it's a good interface -- simple but expressive. Car engineers could have made each 
generation of new technology more visible to drivers, with lots of knobs and switches and readouts, 
but they wisely refrained, and stayed with the abstraction -- the interface -- developed a century ago.

How does abstraction work in computer programming? We'll be revisiting this question all 
semester.  But, for a starting point, think about the blocks in the Snap! menu. Each block names a 
simple intention, comparable to "speed up" or "slow down" in a car. But the mechanisms that make 
those blocks do their job are actually doing very complicated detail work. For example, "move 10 
steps," above the abstraction barrier, just tells the sprite to move over a little. But the sprite isn't a 
real thing; it's a collection of colored dots drawn on a computer screen. "Move 10 steps" really 
means to erase each of those dots, then redraw them all in a different position. And the "glide" block
is even more complicated; it has to erase and redraw many times, moving just a tiny bit each time.

But if the abstraction is working well, you're not thinking about tiny dots of light at all, while 
working with Snap!. You're moving Alonzo!

Snap! lets you, the user, build your own blocks -- your own abstractions. You can take a 
complicated sequence of actions, wrap them up, and present them to another user -- or to yourself 
thinking at a higher level of abstraction -- as a new interface, allowing you to command a new 
behavior without having to know anything about the detailed implementation.
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