
SPECIFYING QUERIES AS 
RELATIONAL EXPRESSIONS 

R.F. Boyce*, D.D. Chamberlin* 
M.M. Hammer**, W.F. King I l l *  

IBM Thomas J. Watson 
Research Center 

Yorktown Heights, N.Y. 

ABSTRACT 

SQUARE (Specifying ~ueries As Relational Expressions) is a set oriented data sublanguage for express- 

ing queries (access, modification, insertion, and deletion) to a data base consisting of a collection of 

time-varying relations. The language mimics how people use relations or tables to obtain information. 

I t  does not require the sophisticated mathematical machinery of the predicate calculus (bound variables, 

quantifiers, etc.) in order to express simple references to tables. However, the language has been shown 

to be complete, i .e . ,  any query expressible in the predicate calculus is expressible in SQUARE. 

I. INTRODUCTION 

In a series of papers E. F. Codd [ I-5] has introduced the relational model of data which appears to 

be the simplest possible data structure consistent with the semantics of information and which provides a 

maximum degree of data independence. 

Given sets Sl, $2, . . . .  S n (not necessarily distinct), R(Si, $2 . . . . .  S n) is a relation of degree n on 

these n sets i f  i t  is a set of n-tuples each of whose elements has i ts f i r s t  component from Sl, i ts 

second component from S2, etc. In other words R(Sl, S2 . . . . .  S n) is a subset of the Cartesian product 

S l x  S2 x. . .x  S n. In this paper we will deal only with normalized relations [ l ] .  A relation is normaliz- 

ed i f  each of i ts domains is simple, i .e . ,  no domain is i tse l f  a relation. 

A normalized relation can be viewed as a table of n columns and a varying number of rows as is 

apparent in Figure I. 

A normalized relation has the following properties: 

I) Column homogeneity - in any particular column all items are of the same type; 

2) All rows of the table are distinct; 

3) The ordering of the rows is immaterial; 

4) I f  distinct names are given to the columns the ordering of the columns is immaterial. 

The concept of a relation has its present day analog in the notion of a f i le .  The rows or tuples 

can be thought of as records. The entire data base may be viewed as a collection of time-varying rela- 

tions of assorted degree upon which inserts, deletes, and updates can be made. 
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EMP NAME SALARY MANAGER DEPARTMENT 

SMITH lOK JONES TOY 

JONES 12K DAHL FURNITURE 

LEE lOK THOMAS APPLIANCE 

Figure I: Employee Relation 

In addition tO IBtroducing the relational data structure, Codd has defined a language [5] which allows 

for the accessing or Feferewici;ng of data represented relat ional ly.  This language and similar ones (COLARD 

[6], RIL [7]) are based on ~the f i r s t  order predicate calculus. Queries in these languages typical ly re- 

quire: : " 

l )  The user to define extra variables which have as values rows or portions of rows of a relation, 
and 

2) The user to state the query using Boolean expressions, and quantifiers (universal and existen- 
t i a l ) .  

Knuth [8] has shown that the majority of statements in FORTRAN are rather simple. We believe this is 

also true of queri.E~ to a data base. SQUARE is a language which attempts to mimic how people use tables 

to obtain information.: I t  does not require the sophisticated mathematical machinery of the predicate cal- 

culus (extra variables, quantifiers) in order to do relat ively simple references to tables. However, i t  

is not hard to show [9] that the SQUARE language is complete, i . e . ,  any query expressible in the predicate 

calculus is expressible in SQUARE. 

The user's perception of a query expressed in the predicate calculus is very different from the SQUARE 

perception. This is a rather i l lus ive  concept to define (section 3 treats i t  in detail including examples) 

but for introductory purposes i t  is suff icient to note that the calculus machinery requires the user to 

express the query in the form - 

l )  Select rows of tables 

2)" Apply a predicate, i f  true return the rows (or portions of rows) 
3) Iterate. 

In SQUARE the user expresses the query in the form - 

l )  Scan a column (or columns) of a table looking for a value (or set of values) 

2) For any such values found return the corresponding element(s) of a certain column(s) 
in the same row. 

Put another way, SQUARE enables the user to describe data selection in terms of set oriented table look- 

ups rather than in a row-at-a-time fashion. This capability makes possible the elimination of quantifiers 

and the elimination of expl ic i t  "l inking terms" when the query requires the correlation of information 

from several tables. 

Before proceeding to i l lus t ra te  the key components of the subject language (section 2) we must 

comment on the relation of SQUARE to current data base languages, e.g., DML of DBTG [lO], DL/I of IMS 

[ I l l .  In general terms both the predicate calculus languages and SQUARE are much higher level in the sense 

of being less procedural. These higher level languages allow the user to specify what are the properties 

of the data to be accessed, modified, inserted, or deleted rather than how the relevant data is to be 

found. Hence by moving to such higher level languages, user productivity is greatly increased. 

I I .  DATA MANIPULATION FACILITIES 

AS we introduce the fac i l i t i es  of SQUARE, we wi l l  i l lus t ra te  them by examples. The examples of this 

section are drawn from a data base describing the operation of a department store, as follows: 
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EMP (NAME, SAL, MGR, DEPT) 

SALES (DEPT, ITEM, VOL) 

SUPPLY (COMP, DEPT, ITEM, VOL) 

LOC (DEPT, FLOOR) 

CLASS (ITEM, TYPE) J 

i f ' '  

The EMP relation has a row for every store employee, giving his name, salary, manager, and department. The 

SALES relation gives the volume (yearly count) in which each department sells each item. The SUPPLY rela- 

tion gives the volume (yearly count) in which each department obtains various items from i ts  various 

supplier companies. We assume that the SALES and SUPPLY relations have no zero-volume entries (e.g., i f  

the Toy Department does not sell dresses, there is no 'TOY, DRESS, O' entry in the SALES relat ion.) The 

LOC relation gives the f loor on which each department is located, and the CLASS relation classifies the 

items sold into various types. 

In this paper we do not deal with the data description language. The questions of unique names, 

comparability of domains, units, authorization, etc., are not described. For a discussion of these issues, 

see [6]. 

We now proceed to describe the syntax of a relational expression, i .e . ,  an expression which evaluates 

to a relation. The simplest form of relational expression is called a "mapping", and is i l lustrated by Ql. 

Ql. Find the names of employees in the Toy Department. 

EMP ('TOY') 

NAME DEPT 

A mapping consists of a relation name (EMP), a domain name (DEPT), a range name (NAME), and an argument 

('TOY'). The value of the mapping is the set of values in the range column of the named relation whose 

associated values in the domain column match the argument. This mapping evaluates to a unary relation (in 

this case, a l i s t  of names.) Mapping emulates the way in which people use tables. In this example, to 

find the names of employees in the Toy Department, a person might look down the DEPT column of the EMP re- 

lat ion, finding 'TOY' entries and making a l i s t  of the corresponding NAME entries. 

In terms of the f i r s t  order predicate calculus the notion of mapping can be defined as: 

R (S) ~ {~[B] : ~ c R A ~ [A] = S}. 
B A 

The argument of a mapping may be either a single value (e.g., 'TOY') or a set of values. I f  the argument 

is a set, the mapping returns al l  those range-values whose corresponding domain-values match any element 

of the argument. Formally, i f  the argument S is a set of individual values si ,  

R (S) ~ U R (s i )  
B A i B A 

For this reason the mapping is generally called a disjunctive mapping. For simplicity the term mapping in 

this paper always refers to a disjunctive mapping. 

In certain instances (e.g., with bu i l t - in  functions SUM, COUNT, etc.) the set-theoretic notions of the 

disjunctive mapping, which eliminates duplicates from the range set of returned values leads to undesirable 

side-effects. Consequently, a special type of mapping, denoted by a prime symbol on the relation name, 

which does not remove duplicates is defined. For example, 

Q2. Find the average salary of employees in the Shoe Department. 

AVG ( EMP' ('SHOE')) 
SAL DEPT 

Mappings may be "composed" by applying one mapping to the result of another, as i l lustrated by Q3. 
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Q3. Find those items sold by departments on the second floor. 

SALES o LOC ( '2 ' )  
ITEM DEPT DEPT FLOOR 

The floor '2' is f i r s t  mapped to the departments located there, and then to the items which they sell. 

The rangeofthe inner mapping must be compatible with the domain of the outer mapping, but they need 

not be identical, a~il~ustrated by Q4. 

Q4. Find the salary of Anderson's manager. 

EMP o EMP ('ANDERSON') 
SAL NAME MGR NAME 

Q3 is repeated in Section I l l  in order to demonstrate the different perception of the query that is re- 

quired in order to answer the query in a predicate calculus-like language. 

The next important building block of relational expressions is called a free variable. A relational 

expression containing a free variable takes the following form: 

free-variable-list : test 

On the lef t  side of the colon are listed the free variables to be used in the query and the relations to 

which they belong. Each free variable represents a row of a relation. Free variables may be given ar- 

bitrary names provided they do not conflict with the names of relations. On the right side of the colon 

is a logical test which may be true or false for each set of values of the free variables. The value of 

the expression is the set of free-variable values for which the test is true. A subscripted free variable 

represents a particular field-value from the row represented by the free variable. For example: 

Q5. Find the names of employees who make more than their managers. 

x E EMP : x > EMP 
NAME SAL SAL 

The following types of operators are permissible in tests: 

numeric comparisons: 

set comparisons: 

arithmetic operators: 

set operators: 

logical connectives: 

parentheses for grouping: 

buil t- in functions: 

The following example constructs a binary relation: 

(x ) 
NAME MGR 

: m > > < < 

"I" - X / 

U N 

AV 
( ) 
SUM, COUNT, AVG, MAX, MIN, etc. 

Q6. List the name and salary of all managers who manage more than ten employees. 

x c EMP : COUNT ( EMP (x )) > lO 
NAME, SAL NAME MGR NAME 

The free variable is introduced into queries where i t  becomes necessary to correlate information per- 

taining to a specific row in a table with another row or set of rows from some table. Consequently, this 

variable is introduced only for queries that are more complex than simple selection. As can be seen in 

Section I l l ,  all queries regardless of complexity require free variables in predicate calculus based 

languages. 

Another important concept is that of projection. I f  a relation-name appears subscripted by one or 

more column-names, i t  represents the set of unique tuples of values occurring in those columns of the 

relation. For example, SUPPLY is the set of all item-values in the SUPPLY relation. This feature 
ITEM 

is useful in constructing expressions like the following: 
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Q7. 

x ~ SUPPLY : SUPPLY (x 
COMP ITEM COMP 

Note that equality here is set equality. 

We wi l l  now discuss some extensions to the concept of mapping. 

Find those companies, each of which supplies every item. 

) :  
COMP ITEM 

SUPPLY 

A mapping may specify more than one 

domain f ie ld  in which case each domain f ie ld  must be compatible with i ts reSpective argument. I f  an argu- 

ment is a set then the value of the domain f ie ld  must match some element of the se t . .Th is  f a c i l i t y  is 

useful in dealing with n-ary associations. For example: 

Q8. Find the volume of guns sold by the Toy Department. 

SALES ('TOY', 'GUN') 
VOL DEPT, ITEM 

Similarly, a mapping may specify more than one range f ie ld ,  in which case i t  returns tuples of values from 

the f ie lds specified. 

When one of the numeric comparison operators m, <, ~, >, ~, is used as a prefix to the argument of a 

mapping, the argument ef fect ively becomes the set of al l  values which compare by the given operator with 

the given argument. This type of mapping often avoids the use of a free variable, as i l lust rated in Q9. 

Q9. List the names and managers of employees in the Shoe Department with a salary greater than lO000. 

EMP ('SHOE', > 'lO000') 
NAME, MGR DEPT, SAL 

The numeric comparison operators >, ~, <, ~, may also be extended so that a number may be compared to a 

set. This is done by placing the word SOME or ALL on the side(s) of the comparison operator which is a 

set. For example, X > ALL Y is true i f  the number X is greater than all  elements of the set Y, and 

Y ALL < SOME Z is true i f  al l  elements of Y are less than some element of Z. This f a c i l i t y  is useful in 

queries l ike the following: 

QlO. Find the names of those employees who make more than any employee in the Shoe Department. 

x E EMP : x > ALL EMP ( 'SHOE') 
NAME SAL SAL DEPT 

In understanding QlO, i t  is important to remember that the free variable x represents a row of the EMP 

relation. I f  the test (which uses the SAL value of the row) is true, the NAME value of the row is 

returned. All rows of the relation are tested in this way, and duplicate values are eliminated from 
the returned set. 

I t  should be noted that the functions of ALL and SOME could be accomplished equally well by the bu i l t -  

in functions MAX and MIN. In fact, definit ions of the modifiers ALL and SOME are given by the following 

table, which specifies how any modifier may be replaced by a bu i l t - in  function: 

o represents a comparison operator 

SOME o MAX o MIN o 

ALL o MIN o MAX o 

o SOME o MIN o MAX 

o ALL o MAX o MIN 

X > ALL Y ~ X > MAX (Y) 

Y SOME < ALL Z ~ MIN (Y) < MIN (Z) 

Examples: 
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Another language feature which is occas iona l ly  useful is  a special type of mapping ca l led a conjunc- 

t i ve  mapping. As in a d i s junc t i ve  mapping, a re la t i on  name, domain, range, and argument are spec i f ied ,  

but the domain name is underl ined to denote the conjunct ive mapping. The conjunct ive mapping d i f f e r s  

from a d i s junc t i ve  mapping only when the argument is a set.  In t h i s  case, the conjunct ive mapping returns 

the set of range values whose corresponding domain values match a l l  elements of the argument set.  Formally, 

we wr i te  the fo l lowing d e f i n i t i o n s  fo r  a d i s junc t i ve  mapping and a conjunct ive mapping on a set S of values 

s i :  

R (S) ~ U R (s i )  
B A i B A 

R (S) z N R (s i )  
B A i B A 

As an example of the use of  a conjunct ive mapping, we might express Q7 as fo l lows,  e l im ina t ing  the free 

var iab le :  

SUPPLY ( SUPPLY) 
COMP ITEM ITEM 

In the case of a mapping with more than one domain, each of the domains may pa r t i c i pa te  con junc t i ve ly  or 

d i s j u n c t i v e l y  in the mapping; those domains which pa r t i c ipa te  con junc t i ve ly  are under l ined.  This is  

i l l u s t r a t e d  by QII .  

QI I .  Find companies, each of which suppl ies every item of type A to some department on the second 

f l oo r .  

SUPPLY ( LOC ( ' 2 ' ) ,  CLASS ( ' A ' ) )  
COMP DEPT, ITEM DEPT FLOOR ITEM TYPE 

The formal d e f i n i t i o n  of a mapping in which some domains pa r t i c ipa te  con junc t i ve ly  is as fo l lows (before 

applying the d e f i n i t i o n ,  permute the domains so that  the conjunct ive domains are on the r i g h t ) :  

I f  Sl = { s i l }  , S2 = { s i 2 } ,  e t c . ,  then 

R (Sl S2...Sn) 
B A i . . . A  k Ak+ i . . .A  n 

L P . . . U  N . . . ~  R (s . .s  i ) .  
i i  i k ik+ I i n B A I . . .A  n i i  s i2" n 

This concludes our d iscussion of the basic accessing f a c i l i t i e s  of SQUARE. Addi t ional  not ions of 

assignment, re turn ing values from funct ions computed on data, i n s e r t ,  de lete,  and update are described 
in de ta i l  elsewhere [9 ] .  

I I I .  COMPARISON WITH PREDICATE CALCULUS BASED LANGUAGES 

In t h i s  sect ion we i l l u s t r a t e  the d i f ference in perception between queries expressed in the ca lcu lus 

and those expressed in SQUARE. As we have already mentioned, the ALPHA language [5 ] ,  COLARD [6 ] ,  and RIL 

[7] are examples of re la t i ona l  languages based on the f i r s t  order predicate ca lcu lus .  They permit the 

descr ip t ion of sets of data but requi re the descr ip t ion to be in terms of tes ts  on ind iv idua l  rows of  the 

re la t ions  in quest ion.  This assumes a cer ta in  degree of mathematical soph is t i ca t ion  on the part  of the 
programmer. 

In the predicate calculus Q1 is expressed as fo l lows:  

{V [NAME] ~ EMP : v [DEPT] = 'TOY'} 
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where v is a variable which ranges over rows of EMP and v[X] is the projection of v on the (set of) 

domain(s) X. Even for this simple query t ~  user must invent a variable to be used as a cursor for 

selection of rows. 

Q3 shows how this notation is extended for functional composition. 

Q3: {Vo [ITEM] ~ SALES : ~(v l  ~ LOC) [ (v l  [FLOOR] = '2')A ~ 

(vl [DEPT] = Vo [DEPT])]} . . . .  ~ 

Here the distinctions between the programmer's perception of the languages becomes clearer. In 

Section I I  we saw that the SQUARE programmer could view this query as a simple combination of table look- 

ups. The calculus programmer must be concerned with: 

l )  Setting up two variables, Vo and v l ,  to sequence through each table; 

2) The notion of existential quantif ier and bound variable; 

3) The expl ic i t  l inking term, "vl [DEPT] = Vo [DEPT]", which describes the interrelationship between 

the variables; 

4) The actual matching cr i ter ia to be satisfied for membership in the set. 

As the queries become more complex the differences between the languages become greater. More varia- 

bles and linking terms are required in the calculus and the management of quantifiers becomes more complex. 

Of course, we do not suggest that really complex queries are simple to express in SQUARE; rather we 

stress the relative difference between the two approaches and perceptions. As an example of a complex 

query, we express Qll in the predicate calculus: 

{~ [COMP] ~ SUPPLY : ~(~LOC) [(~ [DEPT] = ~[DEPT])^(£[FLOOR] = '2 ' ) ]  

AV (c ~ CLASS)[(c[TYPE] = 'A') ~ ~(s ~ SUPPLY) 

((s[COMP] =~ [COMP])A(s[DEPT] =~ [DEPT])^(s[ITEM] = c[ITEM]))]} 

IV. CONCLUSIONS 

This paper has presented the data accessing portion of a data sublanguage based on the relational 

model of data. This query f ac i l i t y  corresponds to the ~ay people use tables. The language does not require 

the user to have the mathematical sophistication demanded by the previous languages based on the f i r s t  order 

predicate calculus. The user describes the relevant data to be accessed by set expressions rather than by 

row-at-a-time iteration. Consequently, the queries are more concise, use fewer temporary variables, and 

do not require the quantifiers of the predicate calculus. 
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QUESTIONS 

Jack  Minker: 

You seem to be attacking the predicate calculus yet you claim your system is complete with respect 
to the first order predicate calculus. That is you can put any expression into a representation in the 
first order predicate calculus. Aren't you sort of hiding the variables, i.e. when you have "department" 
in there what you really mean is a variable and the only difference is that the first order predicate 
calculus makes this explicit? 

Boyce: 

I g n o r i n g  t h e  problem of  q u a n t i f i e r s ,  which i s  a p r imary  problem,  t he  secondary  problem w i t h  
r e s p e c t  to  the  v a r i a b l e s  i s  to  make them i m p l i c i t .  We b e l i e v e  t h a t  i s  a good s a v i n g  because ,  w i t h  
r e s p e c t  to  t he  u s e r ,  to  do s imple  types  o f  q u e r i e s  t he  u s e r  need no t  come up w i t h  a programming 
l anguage  d e f i n i t i o n  o f  v a r i a b l e s  hav ing  the  p a r t i c u l a r  co r re spondence .  

Jack Minker: 

You really are not attacking the first order predicate calculus, but it seemed in your talk that 
you were. What you are doing is making it a llttle more convenient to the user by hiding the 
varlables from him. 

BoTce: 

Yes, I would say that is a fair s,,mHry. We believe that the first order predicate calculus gives 
us a complete system but one that is hard to use. What we have sought is to come up with a mathematically 
equivalent system but one that is easier to usa. 

Richard Nance: 

With r e s p e c t  t o  J a c k  M i n k e r ' s  q u e s t i o n ,  I b e l i e v e  t h a t  your  conce rn  w i t h  t he  p r e d i c a t e  c a l c u l u s  
i s  t h a t  i t  might  f o r c e  t h e  u s e r  i n t o  forms t h a t  seem u n n a t u r a l  and t h a t  seemed c o n t r a d i c t o r y  to  
one o f  t he  g o a l s  you men t ion ,  which i s  to  have something  n a t u r a l  i n  terms of  t he  u s e r .  I s  t h a t  an 
a c c u r a t e  a s sessment?  

Boyce: Yes. 

Jack Minker: 

Wouldn't it be more natural to go to a natural language, rather than a form that is less natural 
but similar to the predicate calculus? 

Boyce: 

Yes, i f  you b e l i e v e  t h a t  i n  t he  n a t u r a l  l anguage  one can make an unambiguous s t a t e m e n t  o f  
a query .  I t  seems to  us t h a t  t h e r e  i s  a g r e a t  problem w i t h  t h a t  from bo th  t h e  u s e r  and sys tem p o i n t s  
o f  v iew.  S ince  Codd has been men t ioned ,  one o f  t h e  t h i n g s  he i s  working on now i s  a sys tem t h a t  w i l l  
accept a natural (English) form of input in an interactive mode and constantly operate on it with 
interaction by the user to formulate on unambiguous query statement. From the experiments I have seen, 
this appears to be a very slow query formulation process. 
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Lawrence Robertson: 

I am unclear as to how actually the user to going to express himself. If you say: "Find the 
employees in the shoe department." Is he going to use the abstract form or something else? 

Boyce: 

Basically there are two notations in the system; one is the mathematical one you have seen here, 
which is two dimensional (one of its major drawbacks), and the other is a keyword English syntax. In 
the second, for example, you would say something llke "Select name from employee where department equal 
toy. '! I did not present that syntax today. It was a development that came along later. 

George Weinberger: 

If you are translating from that natural language into SQUARE and from there into the pred±cate 
calculus, would it not be equivalent to go directly to the predicate calculus notation? 

BOTce: 

The English sentences that we have presented have Been for explanatory purposes only. 
i~ntend for that to be the input to the system. 

We do not 

George Weinber~er: 

What is it that makes the two part translation necessary? 

Bocce: 2 

The predicate calculus notation sets variables that run as cursors through each of these rows. 
For example, a query that takes two variables is llke a double DO loop, If you take the set type of 
expression that I have shown on the board, it takes two linear scans, That requires 2n operations in 
SQUARE while requiring n 2 in the calculus. So our implementation will not go through the calculus. 

George Welnber~er: 

But the calculus does not necessarily imply that you are going to search twice, that is only a way 
of describing it. What can internally happen depends on the implementation. 

BOyce: 

That is right, but we already have a more natural way of describing it in SQUARE; so it seems 
needless to go through the predicate calculus notatfon. 

Esther Lee: 

I am interested in what kind of search you plan to be able to do. For example with a large data 
base and perhaps a large number of employees, can you do something like searching for all employees 
whose salaries are within $I0,000 of a stated value? 

Boyce: 

The prototype system that we are building is very heavily index oriented. We use hashed lookups 
into large indexes. Ideally, we would llke to have some type of associative memories. One of the 
later papers is going to talk about associative disks; I will buy one. 

Leo Bellew: 

Why did you go to the two dimensional form, what is gained? 

Boyce: 

There are concepts of functions in the predicate calculus as contrasted to the relational calculus 
proposed by Codd. We stole that notation as a starting point, and it seemed more natural to use the two 
dimensions to break things up. There is actually no inherent reason. We could as easily have chosen 
another notation. 
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DISCUSSION SESSION 

Boyce: 

When you are looking at a pattern matching type of situation, i.e., looking for patterns of words 
that match patterns of words in documents, then the English language is perhaps sufficiently precise to 
do something meaningful. But I can ask a nice, well-defined query in English, e.g., "What parts have been 
assigned to San Jose?" and I cause all sorts of problems. I have "quantity on hand" and "quantity on 
order" for parts; which do I mean? When I consider "assigned to San Jose", I have warehouses in San Jose 
and I have departments in San Jose; which do I mean? It seems obvious to me that in this case the 
English language is very ambiguous. The second point I would like to address is what is the difference 
between that which we are doing and that which Dr. Waksman is doing. While he didn't emphasize it in his 
paper, Dr. Waksman's system has included a theorem proving type of capability. He can handle inferential 
type queries while we work only with the actual information stored or simple functions of that information. 
Those are the two comments I would like to make to invigorate some type of discussion. 

Hammer: 

As another of the authors of the paper I would like to begin with a particular point; a question 
that might apply to our work as well as others: "Why are you doing it when there are lots of systems 
doing the same thing? Rather than reinventing the wheel you should De looking for solutions to the 
various problems that remain unsolved%" The answer to this I think lies in the reply that there are a 
lot of things that can be done but not economically. By economics I think of both computer usage and 
human usage. As Winograd has said, it is the human usuage that is becoming more expensive relatively. 
So we are concentrating on a language that reduces the human cost. 

Stanley Su: 

Regarding the host language that you are~ proposing, it seems that this special type of notation 
is to allow the user to submit a query that meets his knowledge of the data base and his need for 
information. You imply a negativism about the predicate calculus, yet this formal form required for 
your language seems to be restrictive. 

BOyce: 

I think there is a basic conceptual difference between the way a query is v~ewed in the predicate 
calculus and in SQUARE. SQUARE is basically a set-oriented language. For example, we begin with some- 
thing we know, i.e., a floor, and then determine all departments on this floor. Then we might determine 
all sales items linked with our departments. Consequently, we have mapped from a set of items into 
another set of items. In no case have we chosen an individual row and applied a predicate to that 
row. If We were to express that query in the calculus, we would have two free variables, each one 
having the nature of going through rows of the table one at a time and applying the predicate to see if 
the item in the rows satisfied the predicate. Nowhere do we work with a single row at a time; all of 
our processing involves examination of sets. 

Hammer: 

Implementation-wise it is quite a bit different. You are going to look into the location table for 
rows with item 4 having value 2 and from this obtain a set of departments. You then go through this 
set of departments in the index of the sales table on departments to get a set of rows and then come 
back to take out the item fields. If you were strictly to implement the predicate calculus, you would 
end up with a double DO loop. This is a completely well defined formal system, and I see no reason 
to go to a predicate calculus by formulation. Furthermore, I can implement it in a more straight- 
forward manner. 
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Stanley Su: 

It seems to me that you still perform the same operations as you do in the calculus. 

Boyce: 

The calculus requires n 2 operations and this requires only 2n. 

Stanley Su: 

If you give me a description of what you are doing, I think that I can map it into the calculus 
in such a way as to take less than n 2 operation. 

Hammer: 

Let me answer the question in a slightly different way. What you; are saying might be true. We do 
not have excess power over the calculus. It is as powerful as anything that we can do. We have proved 
that the SQUARE language is equivalent to the predicate calculus in that we can express any language 
in SQUARE that can be expressed in any query. We believe that our notations are more straight forward 
and more natural than that of the predicate calculus. We believe that SQUARE's advantage lies in its 
expressive style rather than its expressive power. 

William A. Zimmerman: 

Related to this, it seems to me that what you have is sort of an APL of sequences on n-tuples. 
Consequently, the difference that we are talking about is almost the same as the differende between APL 
and FORTRAN in juggling arrays. 

Boyce: 

I think that is a very good characterization. 

William A. Zimmerman: 

It seems to me what you really want, as in APL, is to be quite expressive about what kind of data 
selection and data reduction that you can do in terms of algebra or boolean algebra. 

Boyce: 

We tried to emphasize in the paper the ease of use of the simpler concepts as opposed to things 
programmers would like to have. Our technical report addresses the more complicated things that we can do. 

Bernard Plasman: 

Another thing you might emphasize is the difference between predicate calculus approach to relations 
between the rows and your approach. The predicate calculus works with the rows and you are working with 
the columns. Could you invert the tables and do it the same way? Perhaps you get a different look at the 
information in the tables, but you are doing the same thing. It seems to be a question of the content of 
the tables and the way you construct them. The real difference, as Hammer mentioned, is the syntactical 
approach in the way you form the query. If you take the row approach, there is no way to get a handle on 
sets of rows at one time. If you take the columnar approach, there are ways to talk about sets of values 
in columns. I think your characterization, subject to the one clarification I made, is quite correct. 

Frank Manola: 

Earlier in your discussion, you commented that this type of language would be for one type of user 
while programmers might prefer a language with more control. Would you comment on your expectations 
as to whether programmers would like to use a language with the capability of SQUARE in their own work 
space and then doing their own searching procedures? 

Boyce: 

I have no doubt that programmers can easily adapt to this type of notation and be content with it 
from a conceptual point of view. The arEument we get is that programmers deal with current technology 
and are more efficiency oriented. How well a system such as this can perform, given the constraints of 
the technology over the next two to five years, is still an open question. We are still working on the 
efficiency question. 

Georse Weinberser: 

In perspective, relating the work of Salton to your work, you are both providing a front end approach 
to the problem of searching for material. His approach with the natural language is at a higher level, 
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while your approach with SQUARE is at a lower level. Neither of you are at extremes of what you want 
to do, but you are both addressing the same problems with different approaches. His system seems further 
out than yours and in some sense he could develop his approach and translate it into yours. 

Boyce: 

Let me make one remark, and say that he has basically a pattern matching type system. He "burdens" 
the user with pulling away that information he really does not want. He made the statement that something 
like 40% of the information returned using his approach is irrelevant and should be thrown away. We have 
a much higher percentage of return information; on the other hand we have a harder specification. I see 

that you do not agree with that. 

Georse Weinberser: 

He throws it away before he gets to your system, and that is all. 

B0yce: 

No, I think he returns it to the user, who then throws away all that he doesn't want. 

Bernard Pla~man: 

I think he throws away that in which he is not interested before he comes to your system. Then 
he goes into your system to search for that in which he is interested. 

Unidentified Questioner: 

I think there is a basic difference in the problem that Salton is solving and the problem that 
we are solving in that Salton's problem is non-deterministic. We are trying to invent a language that 
can be used by a user with a clear understanding of that which he wants. 

Bernard Plagman: 

If he knows what is in the system. 

Unidentified Questioner: 

A necessary part of the system that uses our language is a catalog, well defined data, and the user 
can examine the catalog to determine that which he wants. 

Bernard Plagman: 

In his system he has the catalog and the dictionary, and the dictionary scans the system for the user. 

George Weinberser: 

Your system in a sense translates to still a lower level, and the question is where should the user 
actually come in. That depends on the applications that he wishes to address. 

Boyce: 

Also, the analogies made with respect to the programmer are that he might wish to come in at a 
lower level. 

Stewart A. Schuster: 

I think that one of the most important things is that Salton's system is dealing with individual 
items whereas the relational system is dealing more with sets. More importantly, the relational system 
is dealing with relations between two sets or two data bases which is the most important problem in data 
base management. This m~ght be characterized as the cross-reference problem whereas Salton is dealing 
with relations among one set rather than many relations. 

Leo Bellew: 

Two problems arise here: (i) the decision problem and (2) the deadlock problem. How do you 
people handle those two problems since they seem to be crucial ones? 

Boyce: 

Let me begin with the deadlock problem. This is one small part of a big data base architecture 
project. The concept consists of three front ends: the first is for the casual user, which is very 
English like, the second is for an intimate intermediary users and the third is for the programmer. 
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All interfaces translate to a system/logical interface. This might be DBTG. Each user above the 
system/logical interface uses the system as his own private system. At the system/logical level we 
treat the problem of concurrent users. At this level we have done work on the locking and deadlock 
level. Locking seems to be a fundamentally different problem in the data base environment than in the 
operating systems environment. One distinctive difference is that a particular record in a data base 
environment can be accessed to many different names; whereas, a printer is a printer is a printer in 
an operating system environment. Another distinction is that in a data base environment, after you 
access a resource and return it to the system, it is now in a different state. When you return a 
printer to the--operating system, it is still a printer; whereas when you return an employee to the 
data base, he may no longer be an employee of department X but an employee of department Y. I think it 
is a very interesting problem, and we handle it at the lower level of the system/logical interface. 
Would you repeat the second question? 

Leo Bellew: 

It had to do with logical consistency in whether the system can detect such a thing and how it 

would treat it? 

Boyce: 

I'm sure that there could be a logical inconsistency that would grind the system to a halt just as 
with the FORTRAN program, one can write a legitimate looking program that does not execute properly. 

Harold Feinleib: 

Returning to the deadlock problem, do you have a way where you can allow the casual user to 
update base and maintain integrity with respect to locking or do you require the programmee interface, 
which knows what it is doing, to maintain the locking? 

Boyce: 

We require the programmee interface to do the locking, and the person at this particular level will 
not know anything about locking. The current system that we are developing does not prevent locking, 
and the transmitter must decide the minimum set to Be locked and lock it. 

Chamberlin: 

Let me expand on this a little. We propose to have several user interfaces, At the SQUARE interface 
we feel the user should not Be concerned with locking. The user is Basically nonprocedural, and locking 
is a procedure. However, we can have several users at that level simultaneously accessing that system 
and the locking will be taken care of for them. The basic problem in translation has to do with 
isolating something that is a transaction. Finding the minimum necessary unit to lock in order to 
process that transaction is difficult. We must lock those units in queue transactions in such a way 
that they will not interfere with each other. Our basic approach is that nothing should remain locked 
in the system while the user is sitting there thinking. Consequently, we are defining a transaction 

as that which the user submits and the system can process as a unit. 

Bernard Plagman: 

(This question, which could not be understood, was related to some system which might be similar 

to the authors'). 

Chamberlinl 

Our work is not identical to theirs but there is some overlap. 

Tom McMullan: 

Do you plan to allow the users to improve on modifications to SQUARE? 

Boyce: 

Yes, we have a set of built-in functions to do common kinds of arithmetic computations, e.g., 
min, max, etc. We intend that it should be an extensible set of functions although we have not yet 

developed a particular syntax program. 

Stanley Su: 

As I understand it, one of the reasons for using something llke the predicate calculus is so that 
you can apply some known theorem proving procedures to arrive at logical deductions and so forth. Can 
your system utilizing the SQUARE language apply some kind of logical deduction procedures? 
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Boyce : 

We have gone absolutely nowhere in that area. To me, it is the next interesting area. The 
question/answering systems are based on deduction and theorem proving capabilities, and they prove to 
be very slow, even for simple queries. It is my hope to develop a more powerful system, but we have 
yet to do anything in this area. 

Stanley Su: 

It seems to me that if you want to embody the theorem proving capability, then you must map the 
language that you have into some form of the predicate calculus. 

Boyce: 

I have just the opposite opinion--that you will map the predicate calculus into SQUARE. 

William A. Zimmerman: 

Can one of your columns in relations be a set of relations. 

Boyce: 

No, you need an argument specification. 

Zimmerman: 

Could we have a relation such as your sales relationship to a department? 

Boyce: 

No, we deal with normalized specifications. 

Esther Lee: 

Is this just for an inquiry system or are you thinking in terms of extending into the interface 
programming work with other higher level programming languages, e..g., COBOL, FORTRAN, etc.? 

BOyce: 

We are thinking about doing that. As a matter of fact our prototype is embedded in~PL/l. You can 
write any combination of PL/i statements in this. But we have not defined what we might call an ideal 
interface between existing programming languages. 

Esther Lee: 

How does this system work in a multiple data base environment in such a case where one data item 
might be identified as "station" in one data base and "installation" in another data base? How would 
you handle this problem? 

Boyce: 

Isn't this simply a synonym capability? 

Chamberlin: 

Is it more complicated than that? 

This goes back to the question of data definition and cataloging, which came up once before. The 
material presented here deals only with the data manipulation capabilities of the language. In addition, 
there is another interface, which might be called a data definition capability, where the users declare 
the view of data that they wish to have materialized. The underlying data base in some sense is 
the union of all the user's views. Different users'can view the same data in quite different ways, e.g., 
using different names, and even in some cases different users may view the data as structurally different. 
A query submitted by a user will be translated considering his particular view, and the result will be 
translated into the underlying system language. 

Esther Lee: 

So you do have a translator that sits between systems? 

Chamberlin: 

We consider it to be a single system with a single underlying datalbase. 
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Diane Smith: 

With the ability to have differing users' views of essentially a single system data base, what kind 
of restructuring capabilities are you planning for resolving differences? 

Boyce : 

Currently, the system has a set of basic relations. You can formulate queries on top of this. 
The queries form a network or tree structure. The query is given a name. You ask another query in 
terms of this meta-relation or meta-structure, and the system, acting in a macro processor type mode, 
expands the query in terms of the basic relations. 

Chamberlin: 

Suppose in our data base we have the following relation: An employee has a tag with name, salary 
and department, as keys in the record. There miEht also be others. A particular user. who is not 
interested in employees, wants a particular view that gives a total budget for wages for each 
department. He says, "I wish to define user view, whose name will be BUDGET". This will appear as 
follows: 

Actual 

Query 

EMPT NAME SAL DEPTI @ 

DEFINE BUDGET: Xdept EMP, Q:Q=sum(salEMPdept 

/ 
DEFINE BUDGET: Xdept EMP,Q:Q=sum(salEMPdept(Xdept)) 

This appears to be a query expressed in the SQUARE language. However, rather than being a one-tlme 
query, it has the nature of a definition. This user then can believe he has the following kind of table 
existing: 

Budget 
Department Total Salary 

And he can issue queries against such a relation. 

William Zimmerman: 

Are you going to have some provision for retaining such tables based on their usefulness? 

Bo[ce: At the moment no, but it would be useful. 

Jack Hellew: It may not be useful, for you may have a horrible maintenance problem. 

Boyce: 

It is a question of frequency of reference versus frequency of updating. We are assuming that it 
is bad, but we do not have good evidence to support that view. 

Esther Lee: Do you have currently or do you plan any backing of queries placed on the system? 

Bocce: 

We have the notion of a transaction, and you can have a sequence of assignment statements 
essentially inside a transaction. Hopefully, we will be able to optimize over the entire transaction. 
We have some algorithms that can do some of that, and there are some things we do not know how to 
accomplish. 
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Paul King: 

Did I understand you to say that you avoid the deadlock problem by...(unintelligible)...of all the 
resources available during the process. 

Boyce: 

No. It is a preemption type scheme, and you assume that you do not have to predeclare everything. 
It would take too long to explain that in this meeting. 

Unidentified Respondent: 

I could probably characterize it in 25 words or less. If the user submits a query in SQUARE, the 
system will decide that set of records, the set of rows, that need to be locked in order to process that 
query to completion. There may be other queries going through locking records also. If two queries 
collide, one will have to go to "sleep" and the other will have to preempt one of the records locked 
by the "sleeping" one. The query that did the preemption will eventually complete its set of records, 
process them to completion and release them. It's basically a record oriented preemption scheme. 

Paul King: 

But you are not in fact doing anything in ...(unintelligible)...allocation. 

Boyce: 

Yes, we are. We have no idea as to how that will perform. If there are many intersections of 
queries, we have a bad scheme. If there are few intersections, then we have a fairly good scheme in 
terms of maximizing concurrency. 

Chamberlln: 

There is some external evidence, a publication by Jack Shemer in last year~s SIGFIDET conference, 
to indicate that the number of deadlocks in data base systems are relatively rare. 

George Weinberger: 

In the storage interface problem, you claim an optimal storage structure selection. Are all forms 
stored the same way and how is the selection made? 

Boyce: 

That is work in progress; it is an extension of the b-tree work of Bayer and others. We really 
have nothing to say about it at this point since our prototype system does not contain this. 

George Welnberger: 

Are b-trees the only type of storage structure to be allowed? 

Chamberlin: 

In addition to choosing thestructure in which the data itself is stored, we are also interested 
in accessing things such as indexes, setting different types of indexes, and setting ways of measuring 
the traffic against relations automatically. 

Leo Bellew: Do you use any of the Data Base Task Group's conceptions? 

BOyce: 

Robert 

Boyce: 

Robert 

Boyce: 

Robert 

Boyce: 

I would say no. 

A. Gaskill: I assume that you allow any degree of sparseness in your tableS, is that correct? 

Do you mean no values? 

A. Gaskill: Yes. 

Yes, we do. 

A. Gaskill: How do you query on the basis of the absence of a value? 

There is a specific no value symbol. 
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