
SEQUEL: A STRUCIURED ~NGLISH QUERY LANGUAGE

b y

Donald D. Chamberlin
Raymond F. Boyce

IBM Research Laboratory
San Jose, California

ABSTRACT: In this paper we present the data manipulation facility for a
structured English query language (SEQUEL) which can be used for accessing
data in an integrated relational data base. Without resorting to the concepts
of bound variables and quantifiers SEQUEL identifies a set of simple opera-
ticns on tabular structures, which can be shown to be of equivalent power to
the first order predicate calculus. A SECUEL user is presented with a consis-
tent set of keyword English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to conpose these basic
templates in a structured manner in order to form more complex queries.
SEQUEL is intended as a data base sublanguage for both the professional pro-
grammer and the more infrequent data base user.

Ccmputing Reviews Categories : 3.5, 3.7, 4.2

~ey Words and Phrases: Query Languages
Data Base Management Systems
Information Retrieval
Data Manipulation Languages

249

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800296.811515&domain=pdf&date_stamp=1974-05-01

SEQUEL

INTRODUCTION

As ccnputer systems become more advanced we see a gradual evolution
from pDocedural to declarative problem specification. There are two major
reasons for this evolution. First, a means must be found to lower software
costs among professional programmers. The costs of program creation, main-
tenance, and modification have been rising very rapidly. The concepts of
struct~ired programming (1,2) have been introduced in order to sinplify pro-
gramming and reduce the cost of software. Secondly, there is an increasing
need to bring the non-professional user into effective CuL,t~nication with
a formatted data base. Mudq of the success of the cc~puter industry depends

• on developing a class of users other than trained cc~puter specialists.

The work on the Structu~d English Query Language (SEQUEL), presented
in this paper, is consistent with the trend to declarative problem speci-
fication. It attempts to identify the basic functions that are required by
data base users and to develop a simple and consistent set of rules for
applying these functions to data. These rules are intended to simplify pro-
gramming for the professional and to make data base interaction available to
a new class of users.

A brief discussion of this new class of users is in order here. There
are sane users whose interaction with a ccnlouter is so infrequent or unstruc-
tured that the user is unwilling to learn a query language. For these users,
natural language or menu selection (3,4) seem to be the most viable alter-
natives. However, there is also a large class of users who, while they are
not computer specialists, would be willing to learn to interact with a com-
puter in a reasonably high-level, non-procedural query language. Examples
of such users are accountants, engineers, architects, and urban planners.
It is for this class of users that SEQUEL is intended. For this reason,
SEQUEL emphasizes simple data struct~es and operations.

In a series of papers, E. F. Codd (5-9) has introduced the relational
nDdel of data, which appears to be the simplest possible general-purpose data
structure, and which provides a maxinun degree of data independence. In this
paper we deal only with normalized relations,'which can be viewed as tables
of n columns and a varying number of rows, as illustrated in Figure i.

~4P i NAME SAL MGR DEPT.

i
I ~4ITH i0000 JC~ES TOY

JONES 12000 ANDERSON FURNI~JRE
i LEE i0000 THCMAS APPLIANCES

i
Figure i. Relation describing enployees.

In addition to introducing the relational data structure, Codd has de-
fined a language (9) which allows for the accessing or referencing of data

250

S~EL

in relational format. This language and similar ones (COLARD (i0), RIL (ii))
are based on the first-order predicate calculus. Queries in these languages
typically require:

I. ~he user to define extra variables which have as values rows or portions
of rows of a relation, and

2. The user to state the query using Boolean expressions and universal and
existential quantifiers.

Knuth (12) has shown that the majority of statements in FORTRAN are
rather simple. We believe this is also true of queries to a data base. Pre-
viously, we have presented a data sublanguage called SQUARE (13, 14), which
provides a simple and straightforward mechanism for referencing data in tables.
SQUARE enables the user to describe data selection in terms of set-oriented
table look-ups rather than in a row-at-a-time fashion. This makes possible
the elimination of quantifiers and the elimination of explicit linking terms
used to correlate information frcmn several tables. Therefore, the S~3ARE
user does not need the r~athematical scphistication of the predicate calculus
to make relatively simple references to tables. However, it has been shown
(14) that the SQUARE language is complete, i.e., any query e~qoressible in
the predicate calculus is expressible in SQUARE.

In this paper we attempt to sunnarize the important points of the SQUARE
work and to report on subsequent work to develop a notation more familiar to
tmtrained users than the concise mathematical notation of SQUARE. In devel-
oping this new syntax we have attenloted to keep in mind the notions of top-
down structured programming, the need for a linear notation, and the need. for
readable prograns that are easy to maintain and modify. The resulting syntax
can best be described as a block-structured ~glish keyword syntax.

S~MARY C~ SCUARE

In this section, the major features of the SQUARE query language will be
reviewed by a series of examples. A more precise definition of these features
can be found elsewhere (13). In the following sections, the query facilities
of SEQUEL will be introduced and applied to the same set of examples, among
others.

All exmqples of this and later sections are drawn frcm a data base des-
cribing the operation of a department store, and consisting of five tables:

~4P (NAME, DEPT, MGR, SAL, CEMM)
SALES (DEPT, ITS4, VOL)
SUPPLY (SjPpr7~, ITS4, VOL)
IEC (DEPT, FiOOR)
CLass (zn~, TYPE)

25]

SEQUEL

~he ~4P table has a row for every store enployee, giving his name, department,
manager, salary and commission for the last year. The SALES table gives the
vol~e (yearly count) in which eadn department sells each item. The SUPPLY
table gives the volt~e (yearly count) in which each supplier company supplies
various items to the store. The IOC table gives the floor on which each de-
partment is located, and the CLASS relation classifies the items sold into
various types.

The simplest expression in SQUARE is called a mapping and is illustrated
byQl.

Qi. Find the names of employees in the toy department.

~4P ('TOY')
NAME DEPT

A mapping consists of a table name (IMP), a dcmain (DEPT), a range (NAME), and
an ar~ent ('TOY'). The value of the mapping is the set of values of the
range col~mm of the named table whose associated values in the dc~ain colum
match the ~gument. Mapping emulates the way in which people use tables. In
this exaalole, to find the names of employees in the toy department, a person
~ght look down the DEPT coltm~ of the EMP table, finding 'TOY' entries and
making a list of the corresponding NAME entries.

Either the domain or range of a mapping may involve more than one column,
as illustrated by Q2. The result of Q2 is .a list of (name, salary) pairs.

Q2. Find the names and salaries of employees who are in the
toy department and whose manager is Anderson.

~4P ('TOY', 'ANDERSON')
NAME, SAL DEPT, MGR

Mappings may be composed by applying one mapping to the result of
another, as illustrated by Q3.

Q3. Find the items sold by depa~hc~nts on the second floor.

SALES o IJOC ('2')
DEPT DEPT FLOOR

Looking at this query procedurally, the iOC mapping produces a set of de-
paLixc~nts which serves as an arg~ent to the SALES mapping; the result is
the set of items sold by any deparhment in the set. From a descriptfve
point of view, the quezy is written in a top-down left-to-right fashion
much like the English expression. The user wants to receive IT~4(s) from
SALES whenever the DEPT meets some criterion; the criterion is expressed
as DEPT in LOC whenever FLOOR has the value '2'.

252

SEQUEL

In general, the result of a mapping is a set of values or tuples of
values. A set of values may be further processed by applying to it a mathe-
matical function such as SUM, COUNT, AVG, MAX, or MIN:

Q4. Find the average salary of employees in the
shoe department.

AVG (~4P' ('SHOE'))
SAL DEPT

The prime symbol on ~ denotes that duplicate salaries are not eliminated
frcm the set before the AVG function is applied.

Sets produoed by mappings may also be manipulated using the standard set
operators union, intersection, and difference, as illustrated by QS:

Q5. Find those items which are supplied by Levi and sold in
the men' s department.

SAPPLY ('LEVI') n SALES ('MEN')
ITS4 ~JPPLIER IT~ DEPT

E~mple Q6 shews how the basic features of SQJARE can be nested to
form ccmplex queries:

Q6. Find the total volt~e of items of Type A sold by departments
on the second floor.

s~ (SALES CLASS ('A'), LOC ('2'))
VOL ITI~4, DEPT ITEM TYPE DEPT FLOOR

HASIC FEA~TRES OF SI~TJEL

The SEQUEL language is equivalent in power to SQUARE, but is intended
for users who are more ccrnfortable with an English-keyword format than with
the terse mathematical notation of SQUARE. We will introduce the features
of SEQUEL by reviewing the example queries of the previous section, and in-
troducing some new examples.

As in SQUARE, the simplest SEQUEL expression is a mapping which speci-
fies a table, a domain, a range, and an argument, as illustrated by Q1.

Qi. Find the names of employees in the toy department.

SELECT NAME
Fi~3M I~P
WHERE DEPT = 'TOY'

Tne mapping returns the entire set of names which qualify according to the
test DEPT = 'TOY'.

253

SEQUEL

SEQUEL presents the user with a consistent tenplate for expression of
simple queries. The user is/st specify the colLmms he wishes to SELECT, the
table FRCM which the query columns are to be chosen, and the conditions WHERE
the rows are to be returned. The SELECf-FRCM-WHERE block is the basic com-
ponent of the language. In an interactive system this template might be pre-
sented to the user, who then fills in the blanks. For a simple mapping, the
SELECf-FRCM-WHERE block is similar to the approach taken by GIS (15) and IQF
(16).

If the WHERE-clause of a mapping is omitted, the mapping returns a pro-
jection, or list of unique values of the selected col~n (s) taken from the
entire table:

Qi.i. List all departments from the I~ table.

SELECT DEPT
FRCM ~MP

Similarly, if the SELECf clause and the word FROM are cmitted, the map-
ping returns, in their entirety, ail rows which qualify by the ~RE clause,
as in Qi.2:

QI.2. List the rows describing employees whose salary
is greater than 8000.

I~IPWHERE SAL > '8000'

As in SQUARE, either the domain or the range may involve more than one
coltm~, as in Q2:

Q2. Find the names and salaries of enployees who are in the
toy department and whose mBnager is Anderson.

SELECt NAME, SAL
FROM IKMP
WHERE DEPT = 'TOY'
AND MGR = 'AhDERSON'

The highly explicit syntax of S~QUEL enables us to construct a logical
test in the ~ERE clause. For example, value-compariscns may be done using
expressicms of coltmm-names, and using criteria other than equality. These
points are illustrated by Q2.1.

Q2.1. Find names of employees who are either in the 'ADMIN' depart-
ment or whose stm~ of salary and commission exceeds I0000.

S~ .WiT NAME
FRCM ~MP
WHERE DEPT = 'AEMIN'
OR SAL + CCMM > 'i0000'

254

S~UEL

As in SQUARE, a mapping may be applied to the results of an inner
mapping, as in Q3.

Q3. Find the items sold by departments on the second floor.

S~ .FCT IT~
FROM S~LES
WHERE DEPT=

SELECT DEPT
FRQM LOC
WHERE FLOOR = '2'

Once again it is i~ortant to notice the top-down structured programming
influence in this exanple. In writing his basic SELECT-FROM-WH~E block, the
user (XmTeS to the point where he wants to specify a matching criterion on the
DEPT field of SALES. He may specify either a simple value match, such as
DEPT = 'TOY', or an inner mapping as in Q3. If he needs to specify another
mapping he merely fills out another SELEC2-FI~3M-WHERE block. Again an in-
teractive system can aid in this process. Thus the language reduces to a
few basic building blocks and a set of simple rules for (xmposing these
blocks.

In SEQUEL, the matching criterion between the outer and inner mappings
of a cc~posed query is explicitly stated ('=' in Q3). We take advantage of
this explicitness by allowing any of the relational operators =, 4, >, >=,
<, <= as a matching criterion. In general, the inner mapping generates a
set of values. The outer mapping returns rows of the named table ('SALES'
in Q3) whose dc~ain-value ('DEPT' in Q3) crmpares by the matching criterion
with _~ value generated by the inner mapping. Thus Q3 returns the items
sold by any department on the second floor. By using the word ALL after the
matching-~iterion, we can make the outer mapping return rows whose domain-
value compares to all values generated by the inner mapping. Thus changing
'DEPT = ' to 'DEPT = ALL' in Q3 would return the items sold by all depart-
ments on the second floor. This illustrates what is called "con~ctive
mapping" in SQUARE (13). Q3.1 is a further illustration.

Q3.1. Find employees whose salary is greater than that of
any enployee in the shoe department.

SELECT NAME
FI~3M
WHERE SAL > ALL

SELECf SAL
FRCM
WHERE DEPT = 'SHOE'

In general, any comparison operator (>, <, etc.) may be modified by the word
'ALL' on either or both sides in order to enable ccmapariscn of an item to a
set or a set to a set. ~%~en a set is used in a comparison in the absence of
the word 'ALL', the default meaning is 'some'.

255

SEQUEL

As in SQUARE, we can apply a mathematical function to the result of a
mapping by placing the functicn in the SELECT clause, as illustrated by Q4.

Q4. Find the average salary of employees in the shoe department.

SELECT AVG (SAL)
FRCM ~4P
WHERE DEPT = ' SHOE '

In SEQUEL, the question of duplicates is resolved by the following de-
faults : if a mathematical function is applied to the results of a mapping,
duplicates are preserved by the mapping; otherwise, duplicates are eliminated.
~3~ese defaults can be explicitly overridden.

Q4 is an example of a general rule in SEQUEL that the S~.FCf clause m y
contain any arithmetic expression of colun~-names frc~ the table being used.
If mathematical functions appear in the expression, their arg~mlent is taken
frcm the set of rows of the table which qualify by the WHERE clause. For
example:

Q4.1. List each employee in the shoe department and his
deviation frc~ the average salary of the department.

SELECT NAME, SAL - AVG (SAL)
FRCM
WHERE DEPT = ' SHOE '

Union and intersection operators may be used in SEQUEL in exactly the
same way as in SQUARE, as illustrated by Q5.

Q5. Find those items which are supplied by Levi and sold in the
men' s department.

SELECT ITI94
FROM SUPPLY
WHERE SUPPLIER = ' LEVI '
D
SELECT ITS4
FRCM SALES
WHERE DEPT = 'M~q'

It is important to distinguish between the effects of using AND or OR
within a mapping, and the effects of using union or intersection between
mappings. In the first case, the clauses separated by AND/OR apply to the
same row of the table; in the second case, the mappings are applied inde-
pendently and the union/intersection is applied to the results. To illus-
trate this point, assure that the 194P table contains the following entries:

256

SEQJEL

NAME DEPT MGR

JOHN SHOE BOB
FReD SHOE FRANK
FRED TOY BOB
BILL TOY FRANK

The the results of two example queries are given below:

Q5. i. S~ ~CT NAME Result: JOHN
FR~4 ~MP
WHERE DEPT = ' SHOE '
AND MGR = 'BOB'

Q5.2. SELECf NAME Result: JOHN, FRED
FROM ~MP
WHERE DEPT = ' SHOE '
A

S~ ,~C9 NAME
FRCM ~MP
WHERE MGR = 'BOB'

E~mple Q6 is repeated here to show how SEQUEL features can be nested
to form complex queries :

Q6. Find the total vol~re of items of type A sold by
departments on the second floor.

SEL~T ~M NOL)
FROM SALES
~ERE ITS=

SELECt
F~4 CLASS
WHERE TYPE = °A °

AND DEPT=
SELECf DEPT
FROM LOC
WHERE FLOOR = '2'

Note that in this query indentation is used to separate mappings and show the
structure of the query. In practice it might be more ccnvenient to make in-
dentation optional and to terminate each mapping by a semicolon. Then in the
above query there would be one semicolon after TYPE = 'A' and two semicolons
after FLOOR = '2'.

ADDITIONAL OONCEPTS

The primary motivation for the SQUARE query language was to develop
an easy means for accessing a relational data base. We believed that the

257

S~EL

applied predicate calculus with its concepts of variables and quantifiers re-
quired too Im/ch sophistication for the ord~ary user. SQUARE successfully
avoids the concepts of bound variables and quantifiers, but still requires a
free variable whenever it becomes necessary to correlate values from a spe-
cific row in a table with values from another row or rows. Typically in
SQUARE such a query is of the follmwing fozm:

free-variable : test

~he free variable represents a row of a table. The result of the query is a
set of values taken from the rows for which the test is true. A more complete
description of free variables in SQUARE is provided elsewhere (13,14). Ex-
ample Q7 illustrates the concept.

Q7. Find the names of managers who manage more
than ten e~ployees.

x ~ ~MP : COUNT (~MP (x)) > i0
NAME NAME MGR NAME

Note that in Q7 the free variable x is used to correlate a manager's
name with a group of rows representing his employees, so that this group may
be cotmted. Experience has shown that this sort of "grouping" occurs quite
frequently in queries. Accordingly, a way is provided in SEQUEL to divide
the rows of a table into groups according to the values of one or more col-
trams, in a way analogous to the concept of a "gltmp" in Information Algebra
(17). An optional GROUP BY clause may be attached to any FRCM clause in
SEQUEL, with the effect that the rows of the table are considered to be in
groups of matching coltmm~-values. For example, if a query cc~tains the clause
FR3M ~MP GROUP BY MGR, the rows of the ~MP table are formed into grQups of
matching MSR for the purpose of this query. Within the scope of such a clause,
there are certain restrictions on the colu~m-references which may be made.
The grouping col~mn or coltmms @4GR in the above example) may be referred to
because it has only one value per group. Mathemar/cal functions on coltmm-
values may be used, with the implied rue that they take a group of column-
values as their arguTent and return a single value for the group. For example,
within the scope of the clause FR3M ~4P GROUP BY MGR, the function AVG (SAL)
~nld return, for each manager, the average salary of his employees. Other
functions such as S/M, OOUNT, and MAX operate in similar ways. A coltmm-name
which is not part of the grouping criterion may not be referred to except as
an arg~ent to a function whid~ returns a single value per group. E~mple
Q7 is now repeated in SEQUEL to illustrate the GROUP BY feature.

Q7. Find the names of maD~gers who manage more than ten employees.

SELECT MGR
FROM ~4P GROUP BY MGR
WHERE COUNT (NAME) >i0

258

S~EL

~he grouping concept is further illustrated by example Q8.

Q8. List the departments and the sum of the employee
salaries in each depa~h~=nt.

SEU~ DE~, S~ (SAL)
FROM ~4P GRfX/P BY DEPT

If needed, the user may uonstruct a literal tuple or an entire table out
of ccnstants for use in a quezy. This is illustrated by Q9, which also illus-
trates the special function SET, which returns the set of values grouped to-
gether by the GROUP BY clause.

Q9. Find those depaxtx6~nts whidu haw employees named SMITH,
JONSON, amd ~JGHES, all having JONES as their manager.

SELECT DEPT
FROM ~MP
WHERE SEt (NAME, MGR) =

{ < 'SMITH', 'JUNES' >,
! I I ! > < J O I N , J O N E S ,

< 'HUGHES', 'JONES' >}

There are a few remaining queries whidl require a free variable in S~ARE
in order to resolve ambiguity in a colu~-reference. In most cases, the ambi-
guity can be resolved in SEQUEL by qualifying the coltmm-nsme with its table-
name. This is illustrated by Qi0, whiQh implements what Codd (7) would call a
"join" between the SALES and SJPPLY tables cn their ~ colunus:

Qi0. List rows of SALES and SUPPLY concatenated together whenever
their ~ values mich.

SALES, S3PPLY
WHERE SALES . ITEM = SUPPLY .

In those cases where a table-name is not sufficient to resolve the ambiguity
(because the same table-~e appears more than once in the query), SEQUEL
allows an arbitrarily-d~osen block label to be attad~ed to a mapping and used
to qualify coltmn-references. This is illustrated by QiI.

Qii. FLnd names of emplcyees whose salary is greater
than their manager's salary.

Bi: SELECT NAME
FRDM ~MP

SAL >
SELECT SAL
FROM EMP

NAME = Bi.MGR

259

SEQUEL

In this query, the outer mapping, labelled Bi, returns the NAME value of all
rows which meet the following test: the SAL value of the Bl-row must be greater
than the SAL value of the row whose NAME is the same as the MGR of the Bl-rcw.

CCMPARISON WITH PP~DICATE CALaJLUS BASED L A N ~

In this section we illustrate the differences in perception between que-
ries expressed in languages (9-11) based on the first order predicate calculus
and those expressed in SEQUEL. Tne calculus-based languages permit the descrip-
tion to be in terms of tests on individual rcws of the relations in question.

Consider the expression of query Q6 in the calculus:

Q6. Find the total vol~e of items of type A sold by
departments on the second floor.

S[E4 {x[VOL] c SALES :

(~y £ CLASS) ((y [ITI~4] = x[IT~q]) A (y[TYPE] = 'A'))

A (~Z e LOC) ((z[DEPT] = x[DEPT]) A (z[FIEOR] = '2'))}

~he calculus progra~er tin/st be ccncerned with:

i. Setting %p three variables x, y, and z to sequence through each table.

2. Tne notions of existential quantifiers and bound variables.

3. The e~plicit linking terms

"y[IT~4] = x[IT~4]" and "z[DEPT] = x [DEPT]"

4. The actual matching criteria for membership in the output set.

We shewed earlier, however, that this query could be expressed in SEQUEL
simply by composing three mapping blocks. Of course, we do not suggest that
really complex queries are simple to express in SEQJEL; rather we stress the
difference between S~UEL and mDre conventional approaches. This distinction
in perception has been treated more fully in (13).

S~MARY

This paper has presented the data manipulation facility (EMF) of a data
sublanguage based on the relational model of data. This sublanguage has also
been used'as the basis of a data definition facility (DDF) (18). Together the
DDF and DMF ~uL~rise a query facility oriented toward users who are not ccmpu-
ter specialists. The simple block-structured ~nglish keyword syntax and sim-
ple operations on tables enable users to interact with the SEQUEL system with
less training and sophistication than would be required in either a calculus-
oriented system or a traditional procedural programming language. SEQUEL

260

SEQUEL

users describe the relevant data to be accessed by set expressions rather than
by rcw-at-a-ti~e iteration. The resulting queries tend to be concise, clearly
expressed, and easy to write, maintain, and modify. The formal syntax for
SE~jEL queries is given in the Appendix.

A C ~ T

The authors wish to thank M. M. Astrshan, E. D. Carlson, E. F. Codd,
P. L. Fehder, W. F. King, P. Reisner, and R. Williams for their interactions
during the development of SEQUEL.

REFER~CES

(i) E. W. Dijkstra, "Structu~d Programming," Software Engineering Techniques,
NATO Science Committee (ed. J. N. Burton and E. Randell), 1969, pp. 88-93.

(2) F.T. Baker, "System C,~14ty Through Structured Programming," Proc. AFIPS
1972 FJCC, vol. 41, 1972, pp. 339-343.

(3) F. B. Thcapson, P. Lockeman, B. R. Dostert, R. Deverill, "REL: A Rapidly
Extensible Language System," Proc. 24th ~/D4 Naticnal Ccnference, New York,
N. Y., August 1969, pp. 399-417.

(4) E.F. Codd, "Seven Steps to Rendezvous with the Casual User," IHM Research
Report PJ 1333 IBM Research Laboratory, San Jose, Calif., January 1974.

(5) E. F. Codd, "A Relational Model of Data for Large Shared Data Banks,"
Comm. ACM, vol. 13, no. 6 (Jtme 1970) pp. 377-387.

• (6) E.F. Codd, "Further Normalization of the Data Base Relational Model,"
Courant C~puter Science Symposia, vol. 6, Data Base Systems, Prentice-
Hall, New York, May 1971.

(7) E. F. Codd, "Relational Completeness of Data Base Sublanguages," Courant
Computer Science Sy~sia, vol. 6, Data Base Systems, Prentice-Hail-,
New York, May 1971.

(8) E. F. Codd, "Normalized Data Base Structure -- A Brief Tutorial," Proc.
1971 ~3M SIGFIDET Workshop on Data Description, Access, and Control,
San Diego, Calif., November 1971.

(9) E.F. Codd, "A Data Base Sublanguage Founded on the Relational Calculus,"
Proc. 1971 ACM SIGFIDET Workshop on Data Description, Access, andControl,
San Diego, Calif., November 1971.

(lO) G. Bracchi, A. Fedeli, and P. Paolini, "A Language for a Relational Data
Base Management System," Proc. of the Sixth Annual Princeton Conf. on
Info. Sci. and Systems, Marah 1972, pp. 84-92.

261

SE~EL

(ii) P. L. Fehder, "The Representation-Inde~ndent Language", IBM Technical
Re~x~rt RJ 1121, IEM Research Laboratory, San Jose, Calif., November 1972.

(12) D. E. Knuth, "An E~pirical Study of FORTRAN Programs," Sof~are--Practice
and E~eri~ce, Vol. i, No. 2 ~pril 1971) pp. 105-133.

(13) R. F. Boyoe, D. D. Chamberlin, W. F. King III, and M. M. Hammer, "Speci-
fying Queries as Relational Ewpressicms," Proceedings of ACM SIGPLAN/
SIGFIDEf Interface Meeting cn PTo~rammin~ Languages and Information Re-
trieval, Gaithersburg, Md., November 1973.

(14) R.F. Boyce, D. D. Chamberlin, W. F. King III, and M. M. Hammer,
"Speci~ling Queries as Pelatic~al Expressions: SQUARE," IBM Technical
Report R7 1291, IBM Research Laboratory, San Jose, Calif., October 1973.

(15) J. H. Bryant and P. Semple, Jr., "GIS and File Management," Proceedings
of ACM National Ccnference, 1966, pp. 97-107.

(16) "Interactive Query Facility (IQF) for IMS/360," Publication No. GH20-
1074, IBM Cozp., White Plains, N.Y., (1971).

(17) CODASYL, "An Information Algebra," Comm. ACM, 5, 4 (April 1962) pp. 190-
204.

(18) R.F. Boyce and D. D. Chamberlin, '~Jsing a Structured English Query
language as a Data Definition Facility," IBM Technical Report RJ 1318,
IBM Research Laboratory, San Jose, Calif., December 1973.

APP~DIX: SEQUEL QUERY SYN~X

NO,Z'E: [] denotes optional
I denotes alternative form

query : : = basic-query
l basic-query n query
{ basic-query u query
} basic-query - query
I (query)

basic-query :: = [label:] sel-clause-list [where-clause];

sel-clause-list : : = ~el-clause

I sel-clause-list, sel-clause

262

S~UEL

sel-clause :: = [SZLECT expr-list FROM] table-name
[GROUP BY col-n~e-list] [dup-uode]

dup-code :: = I~JPL I L~IQUE

expr-list : : = expr
I expr-list, e~pr

col-name-list :: = col-name
I col-name-list, col-name

where-clause : : = ~ERE boolean

boolean :: = p~dicate
I predicate AhD boolean
i predicate OR boolean
I NOT boolean
J (boolean)

predicate : : = ~uL,:,arand ccmp-op cumparand

~-op :: = [ALL] rel-op [ALL]
I set-op

rel-op :: = i ~ I < I -< I > I

set-op ::--= I ZI = Ill ~ I¢

oomp~d :: =~r

expr: = atom
expr+atom

e~r-atcm
exprxatnm
expr/atcm
~r)
~ r ~

atom :: =
I
I
I
I

set-fn : :

col-name
table-n~e . col-name
label . col-nare
oonstant
set-fn (uol-name)

=S~ IC~T IAVG IMAX iM~N ISET

263

S~EL

Literal : : = lit-table
i lit-tuple
I oonstant

lit-table : : {lit-tuple-list}

lit-tL~le-list :: = lit-tuple
I lit-tuple-list, lit-tuple

lit-tuple : : = <constant-list>

osnstant-list : : = constant
i constant-list, constant

constant : : = 'string'
i ' nunber'

264

