
IBM’s Relational DBMS Products: Features

C. MOHAN

Data Base Technology Institute, IBM Almaden Research Center,
rrwhan@alrrwden. ibm. com

and Technologies

San Jose, CA 95120, USA

Abstract This paper very briefly summarizes the features
and technologies implemented in the IBM relational DBMS
products. The topics covered include record and index
management, concurrency control and recovery methods,
commit protocols, query optimization and execution tech-
niques, high availability and support for parallelism and
distributed data. Some indications of likely future product
directions are also given.

1. Introduction

Currently, there are four IBM7Mrelational data base man-
agement system (RDBMS) products. They are SQL/DS,
DB2,’” IBM DATABASE 2 0S/2 -W and AS/400T” DBMS.
While the SQL language supported by these systems is
more or less the same [I BM92], the architectural and
implementation features of these systems are very dif-
ferent. In this paper, we focus on some of the features
and technologies of these DBMSS. We do this by consid-
ering the different aspects of data base management -
namely, buffer management, index management, record
management, recovery, concurrency control, query opti-
mization, etc. More details about these can be found in
the referenced papers. First, we briefly introduce each of
the systems.

1.1. SQL/DS

SQL/DS, IBM’s first RDBMS, was introduced in 1981. That
release was essentially the product version of System R
[ChGY81]. Since then, SQUDS has evolved considerably.
It runs on VM and VSE. In VSE, it can be accessed via
CICS, with atomic update of CICS and SQLdata guaranteed
via two-phase commit (CICS acts as the coordinator).

1.2. DB2

DB2, first released in 1983, initially used the SQL/DS code
for the upper parts of the system (e.g., query optimization
and query processing features [CLSW84]). The DB2 data
manager, on the other hand, was designed and built from
scratch. DB2 runs on the MVS operating system and can
be accessed through the transaction monitors lMS/TM
and CICS. Atomic commit of updates on both DB2 data
and CICS/l MS data within a single transaction is guaran-
teed. DB2 is tightly integrated with the features of its
underlying MVS and hardware. DB2 V2R3 provides some
basic support for the shared disks environment: multiple
DB2s can read the shared data base or one DB2 can
update it. Support for finer granularity of sharing
[MoNa91] is being implemented.

Permission to copy without fee all or part of this material ie
granted provided that the copies are not made or distributed for
direct commercial advantage, tha ACM copyright notice snd the
title of the publication and its date appear, and notice is givan
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
SIGMOD 151931Washington, DC,USA
@1993 ACM 0.8979 J.~92.~j93/000~\044~ ---$J -so

445

1.3. AS/400 DBMS

AW400 DBMS, like its predecessor S/38 DBMS, is different
from the other IBM RDBMSS in that most of its functionality
is implemented in the hardware and in the licensed inter-
nal code of the machine [CIC089]. This approach allows
tight integration of system management functions and
increases ease of use. Further, it permits the same data
to be accessed concurrently through either the file system
or the SQL interface, both for read and write [AnCo88].
SQIJ400,TM which was first released in 1988, runs on top
of the OS/400TM operating system.

1.4. DB2/2

The IBM Database 2 0S/2 -V1 (DB2/2 for short) runs on
0S/2 [ChMy88]. It is the newest of the IBM RDBMSS. It
was introduced in 1988 as 0S/2 Extended Edition Database
Manager. Its most recent 32-bit version and enhance-
ments is DB2/2 VI. Most recently, the newest member
of the DB2 family for the AIX/6000, TMcalled DB2/6000,w
has been announced, DB2/6000 is a port of the DB2/2
code base with substantial enhancements in function and
performance. Since they share a common code base,
these products will continue to evolve together.

2. Storage Management

DB2 and SQL/DS allow more than one table’s records to
be stored in the same file (and even on the same page).
In those systems, when a record is inserted, a clustering
index, if there is one, is used to determine the ideal page
for inserting the record. An attempt is made to insert the
record on that or a nearby page. DB2, DB2/2 and SQL/DS
have special pages called the space map pages (SMP) or
file space inventory pages (FSIP) which describe approx-
imately the space available in a corresponding set of data
pages. This compactly represented information is made
use of while looking for a page with a certain amount of
free space and while performing table scans to skip read-
ing empty pages. In the case of DB2, it is also used to
perform mass deletion of all records of a table efficiently
[CrHT90]. AS/400 provides options to use record insertion
into “holes” left by deleted records or to insert new
records at the end of the data file.

DB2 allows a table to be partitioned based on key ranges
of a partitioning key. For each partition, a local index is
maintained on the partitioning key. All other indexes on
the table are maintained as global indexes [ChMo93].
The partitioning index is also treated as the clustering
index. SQL/DS and DB2/2 store all the indexes of a table
in the same file, While the other DBMSS implement
B+ -trees, AS/400 implements radix binary trees with front
compression and, optionally, sparse indexing. AW400 im-

lM Alx, AS/400, DB2, OB2)2, DB2/600(), IBM, 0S/2, 0S/400 and

SQU400 are trademarks of the International Business Machines
Corp. X/Open is a trademark of X/Open Company Ltd.

plements a sophisticated disk striping scheme for storage
allocation to load balance disk arms. To reduce the need
for disk mirroring, it also implements a RAID-style
checksum technique [CIC089]. DB2 provides user exits
which can be used to implement compression and vali-
dation of user operations on a per table basis.

By using record identifiers which do not refer to locations
of records within a page, DB2, DB212 and SQUDS provide
flexible storage management. When garbage collection
is done, records can be moved around within a page
without the moved records having to be locked or the
movements having to be logged.

3. Concurrency Control

All the DBMSS use locking, but the supported granularities
of locking differ. All of them, except DB2, support record
locking. DB2’s finest granularity is a page for the data
and a subpage (as small as .25K) for an index. DB2/2
uses ARIEWIM [MoLe92] for its index locking, while SQU
DS uses ARIES/KVL [Moha90a]. All, except AS/400, sup-
port automatic lock escalation and deadlock detection.
AS/400 uses timeouts to handle deadlocks. To reduce the
overhead of locking, DB2 V3 implements the Commit_LSN
idea of [Moha90b].

In the area of isolation levels, all except A.W400 support
repeatable read (RR). AS/400 supports an isolation level
called read stability which is like RR except that new
records are not prevented from being inserted by other
transactions after a reader has locked records which sat-
isfy a set of predicates (i.e., the plrantorrisare permitted).
All support cursor stability (CS). DB2/2 and AS/400 sup-
port unlocked/uncommitted (dt rty) read (UR) also. SQU
DS supports the finest granularity of specification for the
required isolation level. It allows different statements of
a transaction to be associated with different isolation lev-
els.

When record locking is in effect, SQUDS uses page locking
for physical synchronization while DB2/2 uses page
latches. AS/400 uses row level latches. From V3, DB2
does page latching even though record locking is not yet
implemented, This permits the implementation of the
Commit_LSN optimization and unlocked reads by the ar-
chive and statistics gathering utilities.

AS/400, DB2 and DB2/2 permit a cursor’s position to be
retained across the commit of a transaction.

4. Recovery

SQL/DS uses the shadow-page technique [GM BLL81] for
recovery, while the others use mostly write-ahead logging.
DB2/2 uses ARIES [MHLPS92], while DB2 originally im-
plemented [Crus84] selective redo then implemented
ARIES. DB2/2 uses shadowing for handling updates to
long fields [LeLi89]. While AS/400 does write-ahead log-
ging, it does not store log sequence numbers (LSNS) on
pages. Hence, it does physical logging of updates to data
pages. In the case of indexes, AS1400 uses shadowing
using a physical log [DHLPR89]. When an index page is
updated for the first time after an index’s last checkpoint,
its before image is logged. On restart after a failure, the
physical log is used to reestablish an index’s last check-
point state. Then, any required index redos and undos
are performed logically by using the log records written
for data page changes [MoLe92]. If the system is used

with index logging turned off, then, after a system failure,
index recovery is performed by rebuilding the index.

DB2 supports archiving of data at the granularity of a
partition of a table, while AS/400 supports table granular-
ity. AS1400 users can also choose to save the log and
thus get only the delta saved. DB2/2 and SQUDS force
the granularity to be the whole data base. While AW400,
DB2 and SQUDS allow archiving to go on concurrently
with updates, DB2/2 quiesces all accesses to the data
base during an archive. SQUDS archives the shadow
version of the data base. Hence, a checkpoint is not
allowed to occur while an archive is in progress. This is
because a checkpoint discards the shadow data base and
makes the current version of the data base become the
shadow also. SQL/DS and DB2 (V3) might archive uncom-
mitted data. DB2 permits page-level incremental archiving
(i.e., archive only the pages modified since the last ar-
chive) [MoNa93]. DB2 is capable of recovering online
damaged pages of a table from an archive while other
pages of the table are being modified by transactions.

5. Buffer Management

Except for AS/400 DBMS, the other DBMSS have a tradi-
tional buffer manager. AS/400 DBMS relies on the sys-
tem’s single-level storage model. This means that the
paging subsystem is the buffer manager and the LRU
page replacement policy is applied across DB and nonDB
pages in real memory, Hence, AW400 DBMS does not
perform DB-page 1/0s explicitly. The paging subsystem
supports sequential prefetch, but is unaware of recovery
requirements. It does not call the DBMS logic before
writing a dirty page to its home location on disk. As a
result, to enforce the write-ahead log protocol, the DBMS
leaves a modified page pinned in main memory until all
its log records are written to disk.

DB212 uses the 0S/2 file system, while DB2 uses a low-
Ievel (media manager) interface of VSAM. SQUDS man-
ages space within VM minidisks. It also supports the
exploitation of exparrcfed storage (i.e., page addressable
storage which can be greater than the 2GB limit imposed
by 31-bit addressing for the byte addressable main stor-
age).

From the beginning, DB2 has had a very sophisticated
buffer manager [TeGu84]. It supports multiple buffer
pools, expanded storage, background batched writes of
dirty pages, and sequential and skip-sequential
prefetching of pages using system agents. It uses 2 LRUS
to treat differently those pages which are read in using
random l/Os and those that are prefetched.

SQUDS forces to disk all dirty pages at checkpoint time,
The others take fuzzy checkpoints.

6. Referential Integrity

DB2, DB2/2 and SQUDS support the automatic enforce-
ment of referential integrity constraints. Referential con-
straint violations are checked as each record is updated,
deleted or inserted. In DB2, constraint enforcement is the
responsibility of the data manager [CEHH90]. An opera-
tion is performed and then a check is made to see if there
is a violation. This approach makes possible certain lock-
ing optimization [Moha90b]. During the execution of
DB2’s load utility, the user has the option of requesting
the suspension of constraint enforcement. If that option

446

is exercised, then a check utility must be run before the
table can be used. The latter performs its checking more
efficiently using a set-oriented approach.

SQUDS and DB2/2 enforce constraints at the query com-
piler level. It is done by modifying a user’s update state-
ments at compile time by adding some query blocks that
execute at query run time to check for constraint violations.
When a uniqueness constraint is defined for a key, SQL/DS
and DB2 obey the ANSI standard and defer checking for
violations until the end of execution of an update state-
ment.

7. Query Optimization

All the DBMSS support precompilation of SQL queries and
perform cost-based query optimization. DB2’s optimizer
ukes a very detailed and sophisticated cost model for
estimating query execution costs [Moha92]. Like System
R, DB2 and SQIJDS perform exhaustive search of the
possible execution plans for a query, using a dynamic
programming algorithm. DB2/2 and AW400 use greedy
algorithms, DB2 supports the tracking of frequently oc-
curring values of indexed fields to avoid/reduce the errors
in estimation of intermediate table sizes otherwise resuit-
ing from an assumption of uniform distribution of field
values. SQUDS takes a different approach and tracks
boundaries of ranges of key values such that all the
ranges have the same number of instances. DB2 considers
the use of multiple indexes of a single table both for index
anding and/or oring [M HWC90]. DB2/2 considers only
index oring.

AS1400 and DB2 may choose a different plan if they are
informed that the user is interested in only a certain
number of records in the query result. AS1400 considers
building temporary indexes to process a query efficiently.
It may also stop looking for better plans if time spent in
optimization exceeds a certain threshold. Unlike the oth-
ers which use only statistics gathered during the previous
execution of a utility, at the time of optimization AS/400
looks up indexes of a table to estimate the number of
qualifying records [ACDL88]. It may also reoptimize a
valid compiled plan at run time if it suspects that due to
some recent changes to the data, reoptimization might
be beneficial. The nested loop and merge scan join meth-
ods are supported by DB2, DB2/2 and SQUDS. DB2 also
supports the hybrid join method [CHHI M91], AS/400 sup-
ports the nested loop join method in a lower level of its
data manager. DB2/2, unlike the others, considers as the
inner table of a join even composite tables (i.e., a result
of one or more joins).

8. Query Execution

During execution, based on certain thresholds, DB2 might
decide not to use some indexes which the optimizer had
included in the plan [M HWC90]. By using index anding/
oring techniques and the hybrid join method, DB2 converts
many random, single-page 1/0s into sequential, multi-page
1/0s. Even when the DB2 index manager is not asked to
do range scans, it caches some information about the
most recent index access made by a transaction to see
if the next access to the same index can avoid traversing
the index from root to leaf. Unlike System R, DB2’s data
manager supports certain set-oriented operations (e.g.,
delete all records that satisfy a certain predicate) to min-
imize the number of inter-component interface crossings.

DB2 and AS/400 are able to attain better performance by
executing the DBMS code in the user process itself. This
can be done without wild user applications causing integ-
rity problems due to some features available in MVS and
0s/400.

For sorting, DB2 implements tournament, quick and tag
sorts. AS/400 supports tournament sort, while DB2/2 sup-
ports height-balanced and tag sorts, and SQUDS supports
quick sort. For queries that involve aggregation opera-
tions, DB2 improves performance by computing some ag-
gregates during sorting.

9. Utilities

Utilities are used to perform batch operations like load,
unload, reorg, index build, check consistency of index and
record data, archive, recover, collect statistics, etc. In-
stead of going through the normal data manager interface
which SQL accesses go through, the DB2 utilities interact
directly with the buffer manager, thereby vastly improving
performance. In DB2 V3, for partitioned tables, partition
independence is provided so that utilities can be executed
concurrently against different partitions of a table. AS/400
also supports index builds concurrently with table updates.
These approaches improve availability and allow paral-
lelism to reduce response times and to exploit MPs. Par-
tition level, rather than table level, locking is used in DB2.
Global indexes on such a table require special handling
by the utilities to make such a level of concurrency pos-
sible.

10. Distributed Data

Distributed relational data architecture (DRDA) protocols
[I BM90] are used when a client application executing in
one environment (e.g., DB2/2) needs access to data stored
in another (server) environment (e.g., DB2). With the
initial DRDA protocols, within one transaction, data resi-
dent in an instance of a remote DBMS can be accessed.
Such an access is called remote unit of work. All the
products support the requester portion of the DRDA pro-
tocol and DB2, SQUDS and AS/400 can be DRDA servers.
DB2/2, in addition to being a DRDA application requester,
is a server to Ian attached clients.

Amongst DB2 systems, the more flexible distributed unit
of work is also supported. In a single transaction, DB2
V2 supports access to data distributed across multiple
DB2s, as long as each SQL statement refers to data
stored in a single DB2. Since a single phase commit is
used, only one site can be updated in a single transaction.
But in ‘/3, multiple sites can be updated since a generalized
version of the presumed abort (PA) commit protocol
[M BCS92, MoL086] has been implemented. This protocol
is now part of the SNA LU6.2 architecture. PA is also
featured in the 0S1 and X/OPENTMdistributed transaction
processing standards.

11. Parallelism

All the DBMSS allow multiprocessors (MPs) to be exploited.
III the case of SQL/DS, while application processing can

exploit M Ps, executions of the data base code can only
exploit a single processor since all data base accesses
for a particular data base are performed by a single vir-
tual machine (the SQIJDS server machine). None of the
DBMSS provides intra-transaction parallelism, except that

447

DB2 V3 supports 1/0 parallelism. 1/0 parallelism allows a
single user process to initiate 1/0s to multiple partitions
of a table in parallel and process the pages as they come
in. This way, the speed mismatch between the CPUS and
1/0 devices is balanced.

12. Futures

In the Starburst research project [LLPS91] we have
learned a lot about high performance complex query pro-
cessing, enhanced concurrency and recovery techniques,
and object oriented relational extensions. As we have
done in the past (eg. exploiting ARIES technology in our
DBMS products), we will continue to incorporate portions
of the Starburst technology and code in further enhance-
ments of IBM database products.

Also, SQL can be expected to be enhanced to support
non-traditional applications more easily and flexib!y. The
Starburst project has provided us experience with respect
to SQL enhancements needed by such applications. We
would also expect to see enhancements in the area of
connectivity y to IBM and non-1 BM platforms. IBM is com-
mitted to the open systems theme.

In the future, all of the products will continue to focus on
improving availability and performance. In the DB2 arena,
increased capacities and better price-performance will be
provided in the future by coupling a collection of CMOS-
based 390 microprocessors.

13. References

ACDL66

AnCo88

CEHH80

ChGY81

CHHIM91

ChMo93

ChMy68

CLSW84

CrHT90

Crus84

DHLPR89

Anderson, M., Cole, R., Davidson, W., Lee, W., Passe,
P., Ricard, G., Youngren, L. Index Key Range Est inwtor,
U.S. Patent 4,774,657, IBM, 1988.
Anderson, M., Cole, R. An Integrated Data Base, In
IBM Application System/4DD Technology, Document
Number SA21-%540, IBM, June 1988.
Crus, R., Engles, R., Haderle, D., Herron, H. Method

for Referent ial Constraint Enforcement in a Database
Management System, U.S. Patent 4,947,320, IBM, 1990.
Chamberlln, D., Gilbert, A., Yost, R. A History af

System R and SoL/Data System, Proc. 7th International
Conference on Very Large Data Bases, Cannes, Sep-
tember 1981.
Cheng, J., Haderle, D., Hedges, R., Iyer, B., Messinger,
T., Mohan, C., Wang, Y. An Efficient Hybrid Join
Algorithm: a DB2 Prototype, Proc. 7th International
Conference on Data Engineering, Kobe, April 1991.
Choy, D., Mohan, C. An Efficient Indexing Method
for Part it ioned Data, IBM Research Report, IBM
Almaden Research Center, January 1993.
Chang, P,Y., Myre, W.’W. 0S/2 EE Database Manager
Overview and Techn ica[Highlights, IBM Systems Jour-
nal, Vol. 27, No. 2, 1988.
Clark, B. E., Corngan, M.J. Application System/400
Performance Characterist its, IBM Systems Journal,
Vol. 28, No. 3, 1989.
Cheng, J., Loosely, C., Shibamiya, A., Worthington, P.
IBM Database 2 Performance: Design, Implemental ion,
and Tuning, IBM Systems Journal, Vol. 23, No. 2, 1984.
Crus, R., Haderle, D., Teng, J. Method for Minimizing
Locking and Reading in a Segmented Storage Space,
U.S. Patent 4,961,134, IBM, October 1990.
Crus, R. Oata Recovery in IBM Database 2, IBM Systems
Journal, Vol. 23, No. 2, 1984.
DeLorme, D., Helm, M., Lee, W., Passe, P., Rlcard,
G., Timms, Jr., G., Youngren, L. Database Index

GIWBLL61

lBfu19D

lBfut92

LeLi89

LLPS91

MBCS82

MHLPS92

MHWC90

Moha90a

Moha90b

MoLe92

MOL066

MoNa91

MoNa93

TeGuS4

Journal ing for Enhanced Recovery, U.S. Patent
4,819,156, IBM, April 1989.
Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lone,
R., Price, T., Putzolu, F., Tra!ger, 1. The Recovery
Manager of the System R Database Manager, ACM Com-
puting Surveys, Vol. 13, No. 2, June 1981.
Distributed Relational Database Architecture l?efer-

ence, Document Number SC26-4651, IBM, August 1990.
Systems Appl icat ian Architecture Consrwn Progran?ning

Interface Database Level 2 Reference, Document Num-
ber SC26-4786-01, IBM, July 1992.
Lehman, T., Lindsay, 0. The Starburst Long Field

Manager, Proc. 15th International Conference on Very
Large Data Bases, Amsterdam, August 1989.
Lehman, G., Lindsay, B., Plrahesh, H., Schiefer, B.
Extensions to Starburst: Objects, Types, Functions,
and RuZes, Communications of the ACM, Vol. 34, Num-
ber 10, October 1991.
Mohan, C., Br!tton, K., C!tron, A., Samaras, G. Gen-

eral ized Presumed Abort: Marrying Presumed Abart and
SNA’s LU 6,2 Comnit Protocals, IBM Research Report
RJ8684, IBM Almaden Research Center, March 1992.
Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz, P. ARIES: A Transact ton Recovery Method
Support ing Fine-Granularity Locking and Partial

Rollbacks Using Write-Ahead Logging, ACM Transac-
tions on Database Systems, Vol. 17, No. 1, March 1992.
Mohan, C., Haderle, D., Wang, Y., Cheng, J. Single
Table Access Using Multiple Indexes: Opt imizat ion,
Execution, and Concurrency Control Techniques, Proc.
International Conference on Extending Data Base
Technology, Venice, March 1990.
Mohan, C. ARIES/KVL: A Key-Value Locking Method for
Concurrency Cent rol of Mu1t imt ion Transact ians
Operating on B-Tree Indexes, Proc. 16th International
Conference on Very Large Data Bases, Brisbane, Au-
gust 1990.
Mohan, C. Consnit_LSN: A Novel and Simple Method for
Reducing Lack ing and Latching in Transact ion

Process ing Systems, Proc. 16th International Confer-
ence on Very Large Data Bases, Brvsbane, August
1990.
Mohan, C. Interactions Between Query Opt imizat ion

and Concurrency Contro 1, Proc. 2nct International Work-
shop on Research Issues on Data Engineering: Trans-
action and Query Processing, Tempe, February 1992.
Also available as IBM Research Report RJ8681, IBM
Almaden Research Center, March 1992.
Mohan, C., Lewne, F. ARIES/IM: An Efficient and High
Concurrency Index Management Method Using
Write-Ahead Logging, Proc. ACM SIGMOD International
Conference on Management of Data, San C4ego, June
1992.
Mohan, C., Lindsay, B., Obermarck, R. Transaction

Management in the R* Distributed Oata Base Management

System, ACM Transact ions on Database Systems, Vol.
~1, No. 4, December 1986.
Mohan, C., Narang, 1.Recovery and Coherency-Control
Protocols far Fast Intersystem Page Transfer and
Fine-Granularity Locking in a Shared Disks Transac-

t i On Environment, Proc. 17th International Conference
on Very Large Data Bases, Barcelona, September
1991.
Mohan, C., Narang, 1. An Efficient and Flexible
Nethod for Archiving a Oata Base, Proc. ACM SIG MOD
International Conference on Management of Data,
Washington, D.C., May 1993.
Teng, J., Gumaer, R. Managing IBM Oatabase 2 Buffers
to Maximize Performxmce, IBM Systems Journal, Vol.
23, F/o. 2, 1984.

448

